

UNIVERSIDADE FEDERAL DE SANTA CATARINA

CENTRO DE TECNOLÓGICO Programa de Pós-graduação em Engenharia de Produção

Campus Universitário Reitor João David Ferreira Lima - Trindade

CEP 88040.900 -Florianópolis SC

Fone: (48) 3721-7001/7011

PLANO DE ENSINO

TRIMESTRE - 2024.1

1. IDENTIFICAÇÃO DA DISCIPLINA:						
CÓDIGO	NOME DA DISCIPLINA	TURMA (S)	TOTAL DE HORAS- AULA SEMESTRAIS			
EPS 510068	ESTUDOS AVANÇADOS EM SIMULAÇÃO E PROSPECÇÃO DE CENÁRIOS	MESTRADO E DOUTORADO	Presencial: 45 Síncrona: 0 Total: 45			

2. PROFESSOR(ES) MINISTRANTE(S)

Mauricio Uriona Maldonado (m.uriona@ufsc.br)

3. PRÉ-REQUISITO(S)			
CÓDIGO	NOME DA DISCIPLINA		
EPS 510035	SIMULAÇÃO E PROSPECÇÃO DE CENÁRIOS		

4. EMENTA

A metodologia de dinâmica de sistemas (DS). Revisão do processo de construção de modelos em DS: Estruturação do problema. Definição das hipóteses dinâmicas. Formulação e construção do modelo quantitativo. Verificação (validação) do modelo. Formulação e avaliação de políticas (projeção de cenários). Apresentação, análise e modelamento de aplicações teórico-práticas de simulação e prospecção de cenários. Tutoria no desenvolvimento de estudos de DS e na confecção de artigos com aplicações de DS.

5. OBJETIVOS

Ao finalizar a disciplina, os alunos serão capazes de:

- Desenvolver a capacidade de abstração e modelagem de problemas complexos
- Desenvolver a visão sistêmica para resolução de problemas complexos
- Construir modelos computacionais de dinâmica de sistemas

6. CONTEÚDO PROGRAMÁTICO

Tema 1: Delays e coflows

- Processo de construção de modelos de DS
- Tipos de delays
- Construção de estruturas em coflow
- Cadeias de envelhecimento (aging chains)
- Funções avançados no software

Tema 2: Modelos de Difusão

- Revisão do conceito de difusão de tecnologias
- Estruturas avançadas de difusão
- Calibração de modelos

Tema 3: Validação e interfaces

- Processos de validação de modelos
- Construção e uso de interfaces

7. METODOLOGIA DE ENSINO

A comunicação e interação entre professor e alunos ocorrerá no Moodle [https://presencial.moodle.ufsc.br/] com o envio de mensagens, fóruns, entre outros, como também por meio de correio eletrônico. O feedback sobre o processo de aprendizagem será efetuado por meio do Moodle.

São planejadas as atividades a seguir:

- Aulas expositivas, ministradas pelo professor com a participação do aluno;
- Atividades (resenhas e trabalhos práticos) que serão definidos ao longo do trimestre;
- Apresentação de seminários por parte dos alunos, e do acompanhamento das pesquisas sendo realizadas por cada um;
- Aulas práticas no laboratório de informática, para desenvolver as competências de modelagem e simulação, utilizando softwares especializados: Anylogic PLE (<u>www.anylogic.com</u>) e Stella Architect (<u>www.IseeSystems.com</u>); e
- Realização de um artigo final, onde devem integrar-se o conhecimento adquiridos na disciplina com o de outras disciplinas do programa.

8. AVALIAÇÃO

A avaliação desta disciplina será realizada através da participação dos alunos em:

- Apresentação de seminários (dupla): 20%
- Atividades (Resenhas e modelos) dos temas abordados (individual): 20%
- Mini-artigo (individual): 20%
- Redação de artigo empírico (individual): 40%
 - O objetivo do artigo è publicação em revista (CAPES Qualis B1 ou superior).

Avaliação	Entrega	Descrição	Tema
Seminários	Todas as aulas conforme sorteio	40 minutos de apresentação e 20 de discussão.	Sequencia das aulas
	via <i>moodle</i> , grupo		
	um dia antes da aula		
Resenhas	Em datas previamente definidas	Entre 3 a 5 páginas	Sobre o material de leituras definido
	via <i>moodle,</i> individual		
Modelos	Em datas previamente definidas	Implementação de modelos apresentados nos artigos individuais de cada aluno	Sobre o material apresentado em seminários e nas oficinas com o
	via <i>moodle,</i> individual		professor
Mini-artigo	via <i>moodle,</i> individual	Redação de um texto que inclua i) introdução, ii) referencial teórico, iii) procedimento metodológico e iv) apresentação dos cenários. Este texto fará parte do artigo final. Entre 6 a 10 páginas (ou entre 3000 e 4000 palavras). Deverá ter como base, o artigo apresentado na disciplina pré-requisito: Simulação e Prospecção de Cenários – EPS 510035	Relacionado com o artigo final
Artigo final	via <i>moodle,</i> individual	Artigo relacionado com o tema de pesquisa do aluno. Incluindo o texto de mini-artigo mais a descrição do modelo, resultados e discussão das simulações e conclusões finais. Entre 8.000 a 10.000 palavras (sem contar as referencias).	Artigo específico de cada aluno

Obs. Os materiais base para os seminários serão definidos posteriormente.

9. CRONOGRAMA

Semana	Data	Tema da aula	Recursos Didáticos	Descrição do Conteúdo
1	29/02	Introdução	Presencial	Apresentação da disciplina e Revisão das Etapas do processo de modelagem em DS.
2	07/03	Revisão de CLD e Estoques e Fluxos	Presencial	O uso dos diagramas de laço causal; Exemplos de notação CLD. Estoques e fluxos: exemplo de aplicação
3	14/03	Delays	Presencial	Delays físicos (materiais). Delays de informação. Formas de implementação. Formas de estimação
4	21/03	Delays II	Presencial	Delays físicos (materiais). Delays de informação. Formas de implementação. Formas de estimação
5	28/03	Aplicação de Delays	Presencial	Dinâmicas produzidas pelo efeito de delays. Efeitos cíclicos e instabilidade. Exemplo na indústria do alumínio. Implementação
6	04/04	Coflows e Aging Chains	Presencial	Coflows (cadeias de estoques e fluxos interdependentes). Cadeias de envelhecimento. Exemplos de aplicação. Implementação
7	11/04	Funções avançadas no Anylogic e Stella	Presencial	Funções: arrays, delay, smooth, outras. Problemas típicos na hora de modelar
8	18/04	Revisão de Modelos de Difusão	Presencial	Modelos de difusão de tecnologia. Modelo de Bass. Adaptações do modelo de difusão. Formas de aplicação e implementação
9	25/04	Modelos avançados de Difusão	Presencial	Estruturas avançadas de difusão. Processo de dependência do passado (path dependence) produzido por ciclos de reforço.
10	02/05	Validação de Modelos de DS	Presencial	Bases para a validação em DS. Usabilidade vs validade em DS. Testes de verificação estrutural e de comportamento. Implementação
11	09/05	Construção e uso de interfaces	Presencial	Formas de comunicar resultados. O uso de interfaces para comunicação dos resultados do modelo. Construção de interfaces e dashboards. Exemplo de aplicação
12	16/05	Fechamento da Disciplina	Presencial	Apresentação dos avanços dos artigos

10. BIBLIOGRAFIA BÁSICA (DISPONÍVEL NO MOODLE EM FORMATO PDF)

FORD, F. A. Modeling the environment: an introduction to system dynamics models of environmental systems. 2nd Edition. Island Press. 2009.

GRIGORYEV, I. Anylogic 7 in three days. 2nd Edition. 2015.

RICHMOND, B. **An introduction to systems thinking, ithink**. Isee Systems. 2004.

STERMAN, J. D. **Business dynamics. Systems thinking and modeling for a complex world**. Boston: McGraw Hill Higher Education, 1008p. 2000.

11. BIBLIOGRAFIA COMPLEMENTAR

BORSCHEV, A. The Big book of Simulation Modeling: multimethod modeling with Anylogic 6. Anylogic North America, 2013.

FORRESTER, J. W. Industrial dynamics: A major breakthrough for decision makers. Harvard Business Review, v. 26, n. 4, p. 37-66, 1958.

KIRKWOOD, C.W. System Dynamics Methods: A quick introduction. 1998.

MEADOWS, D. H. Thinking in Systems: A Primer. Chelsea Green Publishing, 2008. 240p.

MORECROFT, J. D. W. Strategic modelling and business dynamics: A feedback systems approach Chichester: Wiley 2007.

PRUYT, E. Small System Dynamics Models for Big Issues: Triple Jump towards Real-World Complexity. Delft: TU Delft Library, 324p. 2013.

WARREN, K. Strategic Management Dynamics. Chischester: John Wiley and Sons, 2008.

12. ALUNOS ESPECIAIS

Deverão preencher formulário de acordo com as regras do PPGEP

13. OBSERVAÇÕES

A. Plano de ensino sujeito a alterações.